30 Carat faceted Garnet on Sterling Silver pendant

Item Information

Dimensions (mm) 36 x 26 x 7mm
Weight (carats) 30 carats
Colors
No Treatment

Garnets ( /ˈɡɑːrnɪt/) are a group of silicate minerals that have been used since the Bronze Age as gemstones and abrasives.

All species of garnets possess similar physical properties and crystal forms, but differ in chemical composition. The different species are pyrope, almandine, spessartine, grossular (varieties of which are hessonite or cinnamon-stone and tsavorite), uvarovite and andradite. The garnets make up two solid solution series: pyrope-almandine-spessartine and uvarovite-grossular-andradite.

Etymology

The word garnet comes from the 14th‑century Middle English word gernet, meaning ‘dark red’. It is derived from the Latin granatus, from granum(‘grain, seed’). This is possibly a reference to mela granatum or even pomum granatum (‘pomegranate’,[2] Punica granatum), a plant whose fruits contain abundant and vivid red seed covers (arils), which are similar in shape, size, and color to some garnet crystals.[3]

Physical properties

Properties

Garnet species are found in many colors including red, orange, yellow, green, purple, brown, blue, black, pink, and colorless, with reddish shades most common.

A sample showing the deep red color garnet can exhibit.

Garnet species’ light transmission properties can range from the gemstone-quality transparent specimens to the opaque varieties used for industrial purposes as abrasives. The mineral’s luster is categorized as vitreous (glass-like) or resinous (amber-like).

Crystal structure

Crystal structure model of garnet

Garnets are nesosilicates having the general formula X3Y2(Si O4)3. The X site is usually occupied by divalent cations (Ca, Mg, Fe, Mn)2+ and the Ysite by trivalent cations (Al, Fe, Cr)3+ in an octahedral/tetrahedral framework with [SiO4]4− occupying the tetrahedra.[4] Garnets are most often found in the dodecahedral crystal habit, but are also commonly found in the trapezohedron habit. (Note: the word “trapezohedron” as used here and in most mineral texts refers to the shape called a Deltoidal icositetrahedron in solid geometry.) They crystallize in the cubic system, having three axes that are all of equal length and perpendicular to each other. Garnets do not show cleavage, so when they fracture under stress, sharp irregular pieces are formed (conchoidal).

Hardness

Because the chemical composition of garnet varies, the atomic bonds in some species are stronger than in others. As a result, this mineral group shows a range of hardness on the Mohs scale of about 6.5 to 7.5. The harder species like almandine are often used for abrasive purposes.

Magnetics used in garnet series identification

For gem identification purposes, a pick-up response to a strong neodymium magnet separates garnet from all other natural transparent gemstones commonly used in the jewelry trade. Magnetic susceptibility measurements in conjunction with refractive index can be used to distinguish garnet species and varieties, and determine the composition of garnets in terms of percentages of end-member species within an individual gem.[5]

Garnet group endmember species

Pyralspite garnets – aluminium in Y site

  • Almandine: Fe3Al2(SiO4)3
  • Pyrope: Mg3Al2(SiO4)3
  • Spessartine: Mn3Al2(SiO4)3

Almandine

Almandine in metamorphic rock

Almandine, sometimes incorrectly called almandite, is the modern gem known as carbuncle (though originally almost any red gemstone was known by this name). The term “carbuncle” is derived from the Latin meaning “live coal” or burning charcoal. The name Almandine is a corruption of Alabanda, a region in Asia Minor where these stones were cut in ancient times. Chemically, almandine is an iron-aluminium garnet with the formula Fe3Al2(SiO4)3; the deep red transparent stones are often called precious garnet and are used as gemstones (being the most common of the gem garnets). Almandine occurs in metamorphic rocks like mica schists, associated with minerals such as staurolite, kyanite, andalusite, and others. Almandine has nicknames of Oriental garnet, almandine ruby, and carbuncle.

Pyrope

Pyrope (from the Greek pyrōpós meaning “fire-eyed”) is red in color and chemically an aluminium silicate with the formula Mg3Al2(SiO4)3, though the magnesium can be replaced in part by calcium and ferrous iron. The color of pyrope varies from deep red to black. Pyrope and spessartine gemstones have been recovered from the Sloan diamondiferous kimberlites in Colorado, from the Bishop Conglomerate and in a Tertiary age lamprophyre at Cedar Mountain in Wyoming.[6]

A variety of pyrope from Macon County, North Carolina is a violet-red shade and has been called rhodolite, Greek for “rose”. In chemical composition it may be considered as essentially an isomorphous mixture of pyrope and almandine, in the proportion of two parts pyrope to one part almandine. Pyrope has tradenames some of which are misnomers; Cape ruby, Arizona ruby, California ruby, Rocky Mountain ruby, and Bohemian garnet from the Czech Republic. Another intriguing find is the blue color-changing garnets from Madagascar, a pyrope-spessartine mix. The color of these blue garnets is not like sapphire blue in subdued daylight but more reminiscent of the grayish blues and greenish blues sometimes seen in spinel. However, in white LEDlight, the color is equal to the best cornflower blue sapphire, or D block tanzanite; this is due to the blue garnet’s ability to absorb the yellow component of the emitted light.[citation needed]

Pyrope is an indicator mineral for high-pressure rocks. The garnets from mantle-derived rocks, peridotites, and eclogites commonly contain a pyrope variety.

Spessartine

Spessartine (the reddish mineral)

Spessartine or spessartite is manganese aluminium garnet, Mn3Al2(SiO4)3. Its name is derived from Spessart in Bavaria. It occurs most often in granitepegmatite and allied rock types and in certain low grade metamorphic phyllites. Spessartine of an orange-yellow is found in Madagascar. Violet-red spessartines are found in rhyolites in Colorado and Maine.

Pyrope–spessartine (blue garnet or color-change garnet)

Blue pyrope–spessartine garnets were discovered in the late 1990s in Bekily, Madagascar. This type has also been found in parts of the United States, Russia, Kenya, Tanzania, and Turkey. It changes color from blue-green to purple depending on the color temperature of viewing light, as a result of the relatively high amounts of vanadium (about 1 wt.% V2O3).[7]

Other varieties of color-changing garnets exist. In daylight, their color ranges from shades of green, beige, brown, gray, and blue, but in incandescent light, they appear a reddish or purplish/pink color.

This is the rarest type of garnet. Because of its color-changing quality, this kind of garnet resembles Alexandrite.

Ugrandite group – calcium in X site

  • Andradite: Ca3Fe2(SiO4)3
  • Grossular: Ca3Al2(SiO4)3
  • Uvarovite: Ca3Cr2(SiO4)3

Andradite

Andradite is a calcium-iron garnet, Ca3Fe2(SiO4)3, is of variable composition and may be red, yellow, brown, green or black. The recognized varieties are topazolite (yellow or green), demantoid (green) and melanite (black). Andradite is found both in deep-seated igneous rocks like syenite as well as serpentines, schists, and crystalline limestone. Demantoid has been called the “emerald of the Urals” from its occurrence there, and is one of the most prized of garnet varieties. Topazolite is a golden-yellow variety and melanite is a black variety.

Grossular

Grossular on display at the U.S. National Museum of Natural History. The green gem at right is a type of grossular known as tsavorite.

Grossular is a calcium-aluminium garnet with the formula Ca3Al2(SiO4)3, though the calcium may in part be replaced by ferrous iron and the aluminium by ferric iron. The name grossular is derived from the botanical name for the gooseberry, grossularia, in reference to the green garnet of this composition that is found in Siberia. Other shades include cinnamon brown (cinnamon stone variety), red, and yellow. Because of its inferior hardness to zircon, which the yellow crystals resemble, they have also been called hessonite from the Greek meaning inferior. Grossular is found in contact metamorphosed limestones with vesuvianite, diopside, wollastonite and wernerite.

Grossular garnet from Kenya and Tanzania has been called tsavorite. Tsavorite was first described in the 1960s in the Tsavo area of Kenya, from which the gem takes its name.[8]

Uvarovite

Uvarovite is a calcium chromium garnet with the formula Ca3Cr2(SiO4)3. This is a rather rare garnet, bright green in color, usually found as small crystals associated with chromite in peridotite, serpentinite, and kimberlites. It is found in crystalline marbles and schists in the Ural mountains of Russia and Outokumpu, Finland.

$92.00 USD

Add to Cart Make an Offer
Shipping $26.80
21 Days via Standard Shipping - Tracked
Add to Watch List Ask a Question * All prices in USD

Audit Information

The Gemstone Sheriff program allows our members to request an audit on any auction, which is completed by an independent Gemologist who assesses the accuracy of the item description and pictures.

Request Audit

Pricing & Details

Auction ID 739423
Watchers 1 watching
Viewed 793 times
Starts 13th Mar 2018 9:02am PDT

Shipping & Insurance

Provider Shipping Transit
DHL $45.00 14 days
FedEx $45.00 14 days
Standard Shipping - Tracked $26.80 21 days
Shipping Insurance all providers $7.00 (optional)

About Earthtreasuresonline

You May Also Like